\(\int \cos (c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx\) [956]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 49 \[ \int \cos (c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\frac {a A \sin (c+d x)}{d}+\frac {a (A+B) \sin ^2(c+d x)}{2 d}+\frac {a B \sin ^3(c+d x)}{3 d} \]

[Out]

a*A*sin(d*x+c)/d+1/2*a*(A+B)*sin(d*x+c)^2/d+1/3*a*B*sin(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2912, 45} \[ \int \cos (c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\frac {a (A+B) \sin ^2(c+d x)}{2 d}+\frac {a A \sin (c+d x)}{d}+\frac {a B \sin ^3(c+d x)}{3 d} \]

[In]

Int[Cos[c + d*x]*(a + a*Sin[c + d*x])*(A + B*Sin[c + d*x]),x]

[Out]

(a*A*Sin[c + d*x])/d + (a*(A + B)*Sin[c + d*x]^2)/(2*d) + (a*B*Sin[c + d*x]^3)/(3*d)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2912

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int (a+x) \left (A+\frac {B x}{a}\right ) \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = \frac {\text {Subst}\left (\int \left (a A+(A+B) x+\frac {B x^2}{a}\right ) \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = \frac {a A \sin (c+d x)}{d}+\frac {a (A+B) \sin ^2(c+d x)}{2 d}+\frac {a B \sin ^3(c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.06 \[ \int \cos (c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\frac {a (9 A+3 B-3 (A+B) \cos (2 (c+d x))+3 (4 A+B) \sin (c+d x)-B \sin (3 (c+d x)))}{12 d} \]

[In]

Integrate[Cos[c + d*x]*(a + a*Sin[c + d*x])*(A + B*Sin[c + d*x]),x]

[Out]

(a*(9*A + 3*B - 3*(A + B)*Cos[2*(c + d*x)] + 3*(4*A + B)*Sin[c + d*x] - B*Sin[3*(c + d*x)]))/(12*d)

Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.90

method result size
derivativedivides \(\frac {\frac {B a \left (\sin ^{3}\left (d x +c \right )\right )}{3}+\frac {\left (a A +B a \right ) \left (\sin ^{2}\left (d x +c \right )\right )}{2}+A \sin \left (d x +c \right ) a}{d}\) \(44\)
default \(\frac {\frac {B a \left (\sin ^{3}\left (d x +c \right )\right )}{3}+\frac {\left (a A +B a \right ) \left (\sin ^{2}\left (d x +c \right )\right )}{2}+A \sin \left (d x +c \right ) a}{d}\) \(44\)
parallelrisch \(-\frac {\left (\left (A +B \right ) \cos \left (2 d x +2 c \right )+\frac {B \sin \left (3 d x +3 c \right )}{3}+\left (-4 A -B \right ) \sin \left (d x +c \right )-A -B \right ) a}{4 d}\) \(53\)
risch \(\frac {a A \sin \left (d x +c \right )}{d}+\frac {a B \sin \left (d x +c \right )}{4 d}-\frac {\sin \left (3 d x +3 c \right ) B a}{12 d}-\frac {a \cos \left (2 d x +2 c \right ) A}{4 d}-\frac {a \cos \left (2 d x +2 c \right ) B}{4 d}\) \(75\)
norman \(\frac {\frac {\left (2 a A +2 B a \right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (2 a A +2 B a \right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {2 a A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 a \left (3 A +2 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}\) \(124\)

[In]

int(cos(d*x+c)*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(1/3*B*a*sin(d*x+c)^3+1/2*(A*a+B*a)*sin(d*x+c)^2+A*sin(d*x+c)*a)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.98 \[ \int \cos (c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=-\frac {3 \, {\left (A + B\right )} a \cos \left (d x + c\right )^{2} + 2 \, {\left (B a \cos \left (d x + c\right )^{2} - {\left (3 \, A + B\right )} a\right )} \sin \left (d x + c\right )}{6 \, d} \]

[In]

integrate(cos(d*x+c)*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/6*(3*(A + B)*a*cos(d*x + c)^2 + 2*(B*a*cos(d*x + c)^2 - (3*A + B)*a)*sin(d*x + c))/d

Sympy [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.53 \[ \int \cos (c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\begin {cases} \frac {A a \sin ^{2}{\left (c + d x \right )}}{2 d} + \frac {A a \sin {\left (c + d x \right )}}{d} + \frac {B a \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {B a \sin ^{2}{\left (c + d x \right )}}{2 d} & \text {for}\: d \neq 0 \\x \left (A + B \sin {\left (c \right )}\right ) \left (a \sin {\left (c \right )} + a\right ) \cos {\left (c \right )} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x)

[Out]

Piecewise((A*a*sin(c + d*x)**2/(2*d) + A*a*sin(c + d*x)/d + B*a*sin(c + d*x)**3/(3*d) + B*a*sin(c + d*x)**2/(2
*d), Ne(d, 0)), (x*(A + B*sin(c))*(a*sin(c) + a)*cos(c), True))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.86 \[ \int \cos (c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\frac {2 \, B a \sin \left (d x + c\right )^{3} + 3 \, {\left (A + B\right )} a \sin \left (d x + c\right )^{2} + 6 \, A a \sin \left (d x + c\right )}{6 \, d} \]

[In]

integrate(cos(d*x+c)*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/6*(2*B*a*sin(d*x + c)^3 + 3*(A + B)*a*sin(d*x + c)^2 + 6*A*a*sin(d*x + c))/d

Giac [A] (verification not implemented)

none

Time = 0.58 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.06 \[ \int \cos (c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\frac {2 \, B a \sin \left (d x + c\right )^{3} + 3 \, A a \sin \left (d x + c\right )^{2} + 3 \, B a \sin \left (d x + c\right )^{2} + 6 \, A a \sin \left (d x + c\right )}{6 \, d} \]

[In]

integrate(cos(d*x+c)*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x, algorithm="giac")

[Out]

1/6*(2*B*a*sin(d*x + c)^3 + 3*A*a*sin(d*x + c)^2 + 3*B*a*sin(d*x + c)^2 + 6*A*a*sin(d*x + c))/d

Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.82 \[ \int \cos (c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\frac {\frac {B\,a\,{\sin \left (c+d\,x\right )}^3}{3}+\frac {a\,\left (A+B\right )\,{\sin \left (c+d\,x\right )}^2}{2}+A\,a\,\sin \left (c+d\,x\right )}{d} \]

[In]

int(cos(c + d*x)*(A + B*sin(c + d*x))*(a + a*sin(c + d*x)),x)

[Out]

(A*a*sin(c + d*x) + (a*sin(c + d*x)^2*(A + B))/2 + (B*a*sin(c + d*x)^3)/3)/d